线段的垂直平分线教案

时间:2024-04-07 09:50:15
线段的垂直平分线教案

线段的垂直平分线教案

作为一名默默奉献的教育工作者,常常需要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?以下是小编为大家整理的线段的垂直平分线教案,仅供参考,欢迎大家阅读。

线段的垂直平分线教案1

1、教材分析

(1)知识结构

(2)重点、难点分析

本节内容的重点是线段垂直平分线定理及其逆定理. 定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据.

本节内容的难点是定理及逆定理的关系. 垂直平分线定理和其逆定理,题设与结论正好相反. 学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点.

2、 教法建议

本节课教学模式主要采用“学生主体性学习”的教学模式. 提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳. 教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人. 具体说明如下:

(1)参与探索发现,领略知识形成过程

学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得 ……此处隐藏5327个字……高,能够利用直尺和圆规作出等腰三角形。知道为什么这样做图,提高熟练地使用直尺和圆规作图的技能。

2.通过探索、猜测、证明的过程,进一步拓展学生的推理证明意识和能力。

教学重点:作已知线段的垂直平分线。

教学难点:理解三线共点的证明方法。

教学过程:

引入:

剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?

定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

证明:在△ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,

∵点P在线段AB的垂直平分线上

∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等)

同理:PB=PC

∴PA=PC

∴点P在AC的垂直平分线上

(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。

∴AB,BC,AC的垂直平分线相交于点P。

议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不都全等)

2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。

做一做:

已知底边上的高,求作等腰三角形。

已知:线段a、b

求作:△ABC,使AB=AC,且BC=a,高AD=h

《线段的垂直平分线教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式